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ABSTRACT

K2CO3-mediated reactions of 6-bromo-2-hexenoates and 7-bromo-2-heptenoate with active methylene compounds deliver highly substituted
cyclopentane and cyclohexane derivatives, respectively via a sequence of SN2�conjugate addition reactions (formal [4 þ 1]- and [5 þ 1]-
annulation) in a diastereoselective manner.

Stereo- and regioselective construction of five- and six-
membered carbocycles (cyclopentane and cyclohexane
derivatives) is one of the most fundamental and important
issues in synthetic organic chemistry because of the im-
portance and prevalence of these motifs in many biologi-
cally active natural products and drug molecules.1 Inter-
molecular annulation reactions allow for the rapid and
selective construction of complex cyclic structures in a one-
potmanner from relatively simple buildingblocks,which is

one of the most ideal processes in organic synthesis
from atom-2 and step-economical3 points of view. While
the annulation approaches to construct cyclopentane
and cyclohexane derivatives have typically relied on the
[3þ 2]-4 and [4þ 2]-modes5 (cycloaddition),6 respectively,
the corresponding [4 þ 1]-7 and [5 þ 1]-processes8 are
scarce.Guidedby these views aswell as our current interest
in conjugate addition reactions9 of carbon nucleophiles
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toward acrylate derivatives,10 we became interested in
the base-mediated reaction of 6-halo-2-hexenoates and
7-halo-2-heptenoates with active methylene compounds
that would provide cyclopentane and cyclohexane deriva-
tives, respectively, via a sequence of SN2�conjugate addi-
tion (a formal [4 þ 1]- and [5 þ 1]-annulation).11�13

Herein, we report a study of this strategy on the carbocycle
synthesis in terms of the reaction efficiency as well as the
diastereoselectivity with various substituents.
We began our investigation by studying the K2CO3-

mediated reactions of (E)-ethyl 4-benzyl-6-bromo-2-hex-
enoate (1a)14 with a series of active methylene compounds
2 (Chart 1).15 Malononitrile (2a), dimethylmalonate (2b)
underwent smooth reactions inDMFat room temperature
to afford trisubsituted-cyclopentanes 3aa and 3ab in good
yieldswith high 2,3-trans-diastereoselectivity. The reaction
of bis(phenylsulfonyl)methane (2c) was sluggish, giving
cyclopentane 3ac only in 13% yield (in spite of excellent
diastereoselectivity) even at a higher temperature of 60 �C.
Three successive stereogenic centers were constructed on
cyclopentane frameworks 3 using (phenylsulfonyl)aceto-
nitrile (2d) and tert-butyl cyanoacetate (2e). The reaction
with 2d provided a nearly single isomer of 3ad, while that
of 2e dropped the diastereoselectivity of 3ae, where the
stereochemistry of the major compound was 1,2-trans-
2,3-trans. Interestingly, construction of a cyclohexane
ring from (E)-ethyl 4-benzyl-7-bromo-2-heptenoate (1b)
with malononitrile (2a) resulted in a reversal of diaster-
eoselectivity that gave 2,3-cis-cyclohexane 3ba as a
major product in good yield. However, the reaction of
1b with dimethyl malonate (2b) was very sluggish (70%
yield, dr=2.3:1 for 5 days), and thatwith (phenylsulfonyl)-
acetonitrile (2d) gave three inseparable diastereomers

with low selectivity while the cyclization proceeded
smoothly (93%yield for 24h, dr=39:36:25; see Supporting
Information).

Encouraged by the diastereoselective [4þ 1]-annulation
to construct cyclopentane,wenext set out to investigate the
reaction of malononitrile (2a) with various 4-substituted
6-bromo-2-hexenoates (Table 1). Methyl (1c), methoxy-
methyl (1d), allylic (1e), propargylic (1f), isopropyl (1g),
and phenyl (1h) moieties could be installed to afford the
corresponding cyclopentanes in good to excellent chemical
yields with high trans-diastereoselectivity.
The construction of cyclopentanes bearing three succes-

sive stereogenic centers was also examined using (phenyl-
sulfonyl)acetonitrile (2d) with various (E)-ethyl 4-benzyl-
6-bromo-2-hexenoates 1 (Table 2). The cyclopentanes 3

were obtained in good yields as a nearly single isomer
except for the reactions of 1c and 1d (entries 1 and 2).
We next examined the effect of the substituents on the

other positions of 6-bromo-2-hexenoates 1 for the diaster-
eoselectivity (Schemes 1 and 2). Installation of a phenyl
group on the C(5) position of 1i rendered the diastereos-
electivity to be lower, giving trisubsituted cyclopentanes
3ia and 3ia0 in a 1.7:1 ratio (Scheme 1a). It was found that
the reactions of trans-4,5-disubstituted 6-bromo-2-hexeno-
ate 1j with 2a and 2d provided tetrasubstituted cyclopen-
tanes 3ja and 3jd, respectively, in high diastereoselectivity

Chart 1. Synthesis of carbocycles by K2CO3-mediated reactions
of 1 with active methylene compounds 2a,b

aUnless otherwise noted, the reactions were carried out on the scale
of 0.3mmol of 1 and 2 (1.5 equiv)withK2CO3 (1.1 equiv) inDMF(3mL)
at rt under a N2 atmosphere. b Isolated yields were recorded above.
Diastereomer ratio determined by 1H NMR, and the structure of the
major isomer shown. cThe reaction was carried out at 60 �C. The acyclic
product obtainedonly via the SN2 reactionwas isolated in 60%yield (see
Supporting Information).
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(Scheme 1b, c). These results implied that the diastereos-
electivity of the present cyclization could be controlled
mostly by the C(4) substituent.16

The reaction of (E)-ethyl 6-bromo-3-methylhex-2-enoate
(1k) with 2a delivered cyclopentane 3ka bearing two succes-
sive quaternary carbon centers (Scheme 2a). Intrigued by
whether the protonation process after the conjugate addition

was selective,17 (E)-ethyl 6-bromo-2-methylhex-2-enoate (1l)
was subjected to the present reaction conditions with
malononitrile (2a). The reaction afforded cyclopentane
3la with good diastereoselectivity (7.7:1), where the (R*,
R*)-isomer was formed as a major product probably via a
concerted process of C�C bond formation and protona-
tion (Scheme 2b; see Supporting Information for more
details).18

Finally, further derivatization of the dicyanocyclopen-
tanes and cyanophenylsulfonylcyclopentanes 3 was ex-
plored (Schemes 3 and 4). Dicyanocyclopentane 3aa was
treated with n-Bu3SnH in the presence of a catalytic

amount of AIBN, affording monodecyanated product
4aa.19 Chemoselective reduction of the ethoxycarbonyl

Table 1. Reactions with Malononitrile (2a)a

aUnless otherwise noted, the reactions were carried out on the scale
of 0.3 mmol of 1 and 1.5 equiv of 2 in DMF (3 mL) at rt under a N2

atmosphere. b Isolated yields were recorded above. cThe diastereomer
ratio was determined by 1H NMR.

Table 2. Reactions with (Phenylsulfonyl)acetonitrile (2d)a

aUnless otherwise noted, the reactions were carried out on the scale
of 0.3 mmol of 1 and 1.5 equiv of 2 in DMF (3 mL) at rt under a N2

atmosphere. b Isolated yields were recorded above. cThe diastereomer
ratio was determined by 1H NMR.

Scheme 1. Effects of the Position of Substituents

Scheme 2. Reactions of 1k and 1l
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group of 4aa by Kim’s procedure20 using the ate complex
of DIBAL-H and n-BuLi gave alcohol 5aa, which with
aqueous acid treatment underwent lactonization, deliver-
ing cis-bicyclic lactone 6aa in good yield (Scheme 3).
The conversion of 3la to lactone 6la could lead to the
confirmation of the stereochemical outcome by NOE
measurement.

Kim’s chemoselective reduction of the ethoxycarbonyl
group of 3ad and 3hd followed by aqueous acid treatment
gaveR-sulfonyl bicyclic lactones 8ad and 8hd, respectively,
in good yields. Reductive cleavage of the phenylsulfonyl
group of 8 with lithium naphthalenide followed by proto-
nation could afford cis-bicyclic lactone 6 smoothly with
retention of the configuration. Similarly, the resulting
lithium enolate generated from 8 could be trapped with
carbon electrophiles such as methyl iodide and allyl bro-
mide, giving 9ad and 10ad bearing a new quaternary
carbon center with retention of the configuration.21

In summary, a concise and stereoselective methodology
for the synthesis of highly substituted carbocycles has been
developed.22 Further investigation on the application of
the present strategy to construct complex organic mole-
cules is currently underway.
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